LAB 3

FIELD STUDY OF SOIL: EXAMINING AND DESCRIBING SOIL PROFILE

Learning outcomes

The student is able to:

1. understand and identify the soil horizons
2. describe some properties of soil horizon

Introduction

A road cut, a hole in the ground, or other exposure, of soil reveals the soil profile, a horizontal sequence of parallel layers called horizons. Horizonation is the result of soil development or genesis. The kinds of horizons and their arrangements are used to characterize soils for purposes of classification and management. In describing soils every horizon is described separately, whether the characteristics are the result of pedogenesis (soil development) or are inherited from the parent material.

Describing soil properties is an art as well as a science. It is an art in that two soil scientists may look at the same profile and see slightly different colors or horizon boundaries, etc. It is a science in that certain guidelines have been established to standardize the description.

You are going to learn the first part of field study of soil, that is, to describe a soil profile in term of its horizons, their thickness and boundaries (refer to the FAO Guideline for Soil Profile Description).
Materials

Soil pit
Measuring tape
FAO Guideline for Soil Profile Description (Partly in the Appendix) @

Activities

Profile Description : Horizonation

1) Dig soil pit or scrape away a fresh cut from an existing profile.
2) Wet the profile face with the spray bottle. Observe the different horizons looking for obvious differences in color, texture, and structure.
3) Mark the approximate boundaries of each horizon.
4) Look at your data sheets and take turns performing each of the tasks to be completed. You may decide to have one person who can print legibly be the recorder.
5) You will be discussing what to call each horizon, but do not name them until you have collected the data. Remember, each horizon designation (A, E etc.) has criteria to which your data will apply.
6) Take note on the general information for the profile. The general information includes the parent material, topography etc as in the FAO Guideline for soil profile description.
7) Record your observations on the Datasheet below.
Datasheet

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth (cm)</th>
<th>Roots</th>
<th>Coarse Fragment</th>
<th>Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some aspects of the General Information.

DATE_________________________ DOMINANT VEGETATION_________________________
LAND USE_________________________ ELEVATION ___________________________
ASPECT_________________________ LOCATION ___________________________
SLOPE_________________________ OTHER NOTES:
Appendix

HORIZON DESIGNATION

Soils vary widely in the degree to which horizons are expressed. Relatively fresh geologic formations, such as fresh alluvium, sand dunes, or blankets of volcanic ash, may have no recognizable genetic horizons, although they may have distinct layers that reflect different modes of deposition. As soil formation proceeds, horizons may be detected in their early stages only by very careful examination. As age increases, horizons generally are more easily identified in the field. Only one or two different horizons may be readily apparent in some very old, deeply weathered soils in tropical areas where annual precipitation is high.

Layers of different kinds are identified by symbols. Designations are provided for layers that have been changed by soil formation and for those that have not. Each horizon designation indicates either that the original material has been changed in certain ways or that there has been little or no change. The designation is assigned after comparison of the observed properties of the layer with properties inferred for the material before it was affected by soil formation. The processes that have caused the change need not be known; properties of soils relative to those of an estimated parent material are the criteria for judgment. The parent material inferred for the horizon in question, not the material below the solum, is used as the basis of comparison. The inferred parent material commonly is very similar to, or the same as, the soil material below the solum.

Designations show the investigator’s interpretations of genetic relationships among the layers within a soil. Layers need not be identified by symbols for a good description; yet, the usefulness of soil descriptions is greatly enhanced by the proper use of designations.

Designations are not substitutes for descriptions. If both designations and adequate descriptions of a soil are provided, the reader has the interpretation made by the person who described the soil and also the evidence on which the interpretation was based.

Genetic horizons are not equivalent to the diagnostic horizons of Soil Taxonomy. Designations of genetic horizons express a qualitative judgment about the kind of changes that are believed to have taken place. Diagnostic horizons are quantitatively defined features used to differentiate among taxa. Changes implied by genetic horizon designations may not be large enough to justify recognition of diagnostic criteria. For example, a designation of Bt does not always indicate an argillic horizon. Furthermore, the diagnostic horizons may not be coextensive with genetic horizons.

Three kinds of symbols are used in various combinations to designate horizons and layers. These are capital letters, lower case letters, and Arabic numerals. Capital letters are used to designate the master horizons and layers; lower case letters are used as suffixes to indicate specific characteristics of master horizons and layers;
and Arabic numerals are used both as suffixes to indicate vertical subdivisions within a horizon or layer and as prefixes to indicate discontinuities.

Figure 3.1. The master soil horizons.

C. Master Horizons and Layers

The capital letters O, A, E, B, C, and R represent the master horizons and layers of soils. The capital letters are the base symbols to which other characters are added to complete the designations. Most horizons and layers are given a single capital letter symbol; some require two.

O horizons or layers: Layers dominated by organic material. Some are saturated with water for long periods or were once saturated but are now artificially drained; others have never been saturated.

Some O layers consist of undecomposed or partially decomposed litter, such as leaves, needles, twigs, moss, and lichens, that has been deposited on the surface; they may be on top of either mineral or organic soils. Other O layers, are organic materials that were deposited under saturated conditions and have decomposed to varying stages. The mineral fraction of such material is only a small percentage of the volume of the material and generally is much less than half of the weight. Some soils consist entirely of material designated as O horizons or layers.

An O layer may be on the surface of a mineral soil or at any depth beneath the surface, if it is buried. A horizon formed by illuviation of organic material into a mineral subsoil is not an O horizon, although some horizons that formed in this manner contain much organic matter.

A horizons: Mineral horizons that formed at the surface or below an O horizon, that exhibit obliteration of all or much of the original rock structure, and that show one or more of the following: (1) an accumulation of humified organic matter intimately mixed with the mineral fraction and not dominated by properties characteristic of E or
B horizons (defined below) or (2) properties resulting from cultivation, pasturing, or similar kinds of disturbance.

If a surface horizon has properties of both A and E horizons but the feature emphasized is an accumulation of humified organic matter, it is designated an A horizon. In some places, as in warm arid climates, the undisturbed surface horizon is less dark than the adjacent underlying horizon and contains only small amounts of organic matter. It has morphology distinct from the C layer, although the mineral fraction is unaltered or only slightly altered by weathering. Such a horizon is designated as A because it is at the surface; however, recent alluvial or eolian deposits that retain rock structure are not considered to be an A horizon unless cultivated.

E horizons: Mineral horizons in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these, leaving a concentration of sand and silt particles. These horizons exhibit obliteration of all or much of the original rock structure.

An E horizon is usually, but not necessarily, lighter in color than an underlying B horizon. In some soils the color is that of the sand and silt particles, but in many soils coatings of iron oxides or other compounds mask the color of the primary particles. An E horizon is most commonly differentiated from an overlying A horizon by its lighter color. It generally has less organic matter than the A horizon. An E horizon is most commonly differentiated from an underlying B horizon in the same sequum by color of higher value, by lower chroma or both, by coarser texture, or by a combination of these properties. An E horizon is commonly near the surface below an O or A horizon and above a B horizon, but the symbol E can be used for eluvial horizons within or between parts of the B horizon or for those that extend to depths greater than normal observation if the horizon has resulted from soil genesis.

B horizons: Horizons that formed below an A, E, or O horizon and are dominated by obliteration of all or much of the original rock structure and show one or more of the following:

1. illuvial concentration of silicate clay, iron, aluminum, humus, carbonates, gypsum, or silica, alone or in combination;
2. evidence of removal of carbonates;
3. residual concentration of sesquioxides;
4. coatings of sesquioxides that make the horizon conspicuously lower in value, higher in chroma, or redder in hue than overlying and underlying horizons without apparent illuviation of iron;
5. alteration that forms silicate clay or liberates oxides or both and that forms granular, blocky, or prismatic structure if volume changes accompany changes in moisture content; or
6. brittleness.

All kinds of B horizons are subsurface horizons or were originally. Included as B horizons where contiguous to another genetic horizon are layers of illuvial concentration of carbonates, gypsum, or silica that are the result of pedogenic processes (these layers may or may not be cemented) and brittle layers that have
other evidence of alteration, such as prismatic structure or illuvial accumulation of clay.

Examples that are not B horizons are layers in which clay films coat rock fragments or are on finely stratified unconsolidated sediments, whether the films were formed in place or by illuviation, layers into which carbonates have been illuviated but are not contiguous to an overlying genetic horizon, and layers with gleying but no other pedogenic changes.

C horizons or layers: Horizons or layers, excluding hard bedrock, that are little affected by pedogenic processes and lack properties of O, A, E, or B horizons. The material of C layers may be either like or unlike that from which the solum presumably formed. The C horizon may have been modified even if there is no evidence of pedogenesis.

Included as C layers are sediment, saprolite, unconsolidated bedrock, and other geologic materials that commonly are uncemented and exhibit low or moderate excavation difficulty. Some soils form in material that is already highly weathered. If such material does not meet the requirements of A, E, or B horizons, it is designated C. Changes not considered pedogenic are those not related to overlying horizons. Layers that have accumulations of silica, carbonates, or gypsum or more soluble salts are included in C horizons, even if indurated. If the indurated layers are obviously affected by pedogenic processes, they are a B horizon.

R layers: Hard Bedrock

Granite, basalt, quartzite and indurated limestone or sandstone are examples of bedrock that are designated R. These layers are cemented and excavation difficulty exceeds moderate. The R layer is sufficiently coherent when moist to make hand digging with a spade impractical, although it may be chipped or scraped. Some R layers can be ripped with heavy power equipment. The bedrock may contain cracks that generally are too few and too small to allow roots to penetrate at intervals of less than 10 cm. The cracks may be coated or filled with clay or other material.

D. Transitional and Combination Horizons:

Horizons dominated by properties of one master horizon but having subordinate properties of another. Two capital letter symbols are used, as AB, EB, BE, or BC. The master horizon symbol that is given first designates the kind of horizon whose properties dominate the transitional horizon. An AB horizon, for example, has characteristics of both an overlying A horizon and an underlying B horizon, but it is more like the A than like the B.

In some cases, a horizon can be designated as transitional even if one of the master horizons to which it is apparently transitional is not present. A BE horizon may be recognized in a truncated soil if its properties are similar to those of a BE horizon in a soil in which the overlying E horizon has not been removed by erosion. A BC horizon may be recognized even if no underlying C horizon is present; it is transitional to assumed parent material.
Horizons in which distinct parts have recognizable properties of the two kinds of master horizons indicated by the capital letters. The two capital letters are separated by a virgule (/), as E/B, B/E, or B/C. Most of the individual parts of one of the components are surrounded by the other.

The designation may be used even though horizons similar to one or both of the components are not present, if the separate components can be recognized. The first symbol is that of the horizon that makes up the greater volume.

Single sets of designators do not cover all situations; therefore, some improvising may be necessary. For example, Alfic Udipsamments have lamellae that are separated from each other by eluvial layers. Because it is generally not practical to describe each lamellae and eluvial layer as a separate horizon, the horizons are combined but the components are described separately. One horizon would then contain several lamellae and eluvial layers and might be designated as an E and Bt horizon. The complete horizon sequence for this soil could be: Ap-Bw-E and Bt1-E and Bt2-C. r material.

E. Subordinate Distinctions Within Master Horizons and Layers

Lower case letters are used as suffixes to designate specific kinds of master horizons and layers. The word "accumulation" is used in many of the definitions in the sense that the horizon must have more of the material in question than is presumed to have been present in the parent material. The symbols and their meanings are as follows:

- **a** Highly decomposed organic material

 This symbol is used with "O" to indicate the most highly decomposed of the organic materials. The rubbed fiber content is less than about 17 percent of the volume.

- **b** Buried genetic horizon

 This symbol is used in mineral soils to indicate identifiable buried horizons with major genetic features that were formed before burial. Genetic horizons may or may not have formed in the overlying material, which may be either like or unlike the assumed parent material of the buried soil. The symbol is not used in organic soils or to separate an organic layer from a mineral layer.

- **c** Concretions or nodules

 This symbol is used to indicate a significant accumulation of concretions or of nodules. Cementation is required. The cementing agent is not specified except it cannot be silica. This symbol is not used if concretions or nodules are dolomite or calcite or more soluble salts, but it is used if the nodules or concretions are enriched in minerals that contain iron, aluminum, manganese, or titanium.
d Physical root restriction

This symbol is used to indicate root restricting layers in naturally occurring or manmade unconsolidated sediments or materials such as dense basal till, plow pans, and other mechanically compacted zones.

e Organic material of intermediate decomposition

This symbol is used with "O" to indicate organic materials of intermediate decomposition. Rubbed fiber content is 17 to 40 percent of the volume.

f Frozen soil

This symbol is used to indicate that the horizon or layer contains permanent ice. Symbol is not used for seasonally frozen layers or for "dry permafrost" (material that is colder than O° C but does not contain ice).

g Strong gleying

This symbol is used to indicate either that iron has been reduced and removed during soil formation or that saturation with stagnant water has preserved a reduced state. Most of the affected layers have chroma of 2 or less and many have redox concentrations. The low chroma can be the color of reduced iron or the color of uncoated sand and silt particles from which iron has been removed. Symbol "g" is not used for soil materials of low chroma, such as some shales or E horizons, unless they have a history of wetness. If "g" is used with "B," pedogenic change in addition to gleying is implied. If no other pedogenic change in addition to gleying has taken place, the horizon is designated Cg.

h Illuvial accumulation of organic matter

This symbol used with "B" to indicate the accumulation of illuvial, amorphous, dispersible organic matter-sesquioxides complexes. The sesquioxide component coats sand and silt particles. In some horizons, coatings have coalesced, filled pores, and cemented the horizon. The symbol "h" is also used in combination with "s" as "Bhs" if the amount of sesquioxide component is significant but value and chroma of the horizon are 3 or less.

i Slightly decomposed organic material

This symbol is used with "O" to indicate the least decomposed of the organic materials. Rubbed fiber content is more than about 40 percent of the volume.

k Accumulation of carbonates

This symbol is used to indicate the accumulation of alkaline earth carbonates, commonly calcium carbonate.
m Cementation or induration

This symbol is used to indicate continuous or nearly continuous cementation. The symbol is used only for horizons that are more than 90 percent cemented, although they may be fractured. The layer is physically root restrictive. The single predominant or codominant cementing agent may be indicated by using defined letter suffixes, singly or in pairs. If the horizon is cemented by carbonates, "km" is used; by silica, "qm"; by iron, "sm"; by gypsum, "ym"; by both lime and silica, "kqm"; by salts more soluble than gypsum, "zm."

n Accumulation of sodium

This symbol is used to indicate an accumulation of exchangeable sodium.

o Residual accumulation of sesquioxides

This symbol is used to indicate residual accumulation of sesquioxides.

p Tillage or other disturbance

This symbol is used to indicate a disturbance of the surface layer by mechanical means, pasturing, or similar uses. A disturbed organic horizon is designated Op. A disturbed mineral horizon is designated Ap even though clearly once an E, B, or C horizon.

q Accumulation of silica

This symbol is used to indicate an accumulation of secondary silica.

r Weathered or soft bedrock

This symbol is used with "C" to indicate root restrictive layers of soft bedrock or saprolite, such as weathered igneous rock; partly consolidated soft sandstone; siltstone; and shale. Excavation difficulty is low or moderate.

s Illuvial accumulation of sesquioxides and organic matter

This symbol is used with "B" to indicate the accumulation of illuvial, amorphous, dispersible organic matter-sesquioxide complexes if both the organic matter and sesquioxide components are significant and the value and chroma of the horizon is more than 3. The symbol is also used in combination with "h" as "Bhs" if both the organic matter and sesquioxide components are significant and the value and chroma are 3 or less.

ss Presence of slickensides

This symbol is used to indicate the presence of slickensides. Slickensides result directly from the swelling of clay minerals and shear failure, commonly at angles of 20 to 60 degrees above horizontal. They are indicators that other vertic
characteristics, such as wedge-shaped peds and surface cracks, may be present.

t Accumulation of silicate clay

This symbol is used to indicate an accumulation of silicate clay that has formed and subsequently translocated within the horizon or has been moved into the horizon by illuviation, or both. At least some part should show evidence of clay accumulation in the form of coatings on surfaces of peds or in pores, or as lamellae, or bridges between mineral grains.

v Plinthite

This symbol is used to indicate the presence of iron-rich, humus-poor, reddish material that is firm or very firm when moist and that hardens irreversibly when exposed to the atmosphere and to repeated wetting and drying.

w Development of color or structure

This symbol is used with "B" to indicate the development of color or structure, or both, with little or no apparent illuvial accumulation of material. It should not be used to indicate a transitional horizon.

x Fragipan character

This symbol is used to indicate genetically developed layers that have a combination of firmness, brittleness, very coarse prisms with few to many bleached vertical faces, and commonly higher bulk density than adjacent layers. Some part is physically root restrictive.

y Accumulation of gypsum

This symbol is used to indicate the accumulation of gypsum.

z Accumulation of salts more soluble than gypsum

This symbol is used to indicate an accumulation of salts more soluble than gypsum.

Conventions for using letter suffixes.—Many master horizons and layers that are symbolized by a single capital letter will have one or more lower case letter suffixes. The following rules apply:

- Letter suffixes should immediately follow the capital letter.
- More than three suffixes are rarely used.
- When more than one suffix is needed, the following letters, if used, are written first: a, e, h, i, r, s, t, and w. Except for the Bhs or Crt horizons, none of these letters are used in combination in a single horizon.
If more than one suffix is needed and the horizon is not buried, these symbols, if used, are written last: c, d, f, g, m, v, and x. Some examples: Btg, Bkm, and Bsm.

If a horizon is buried, the suffix "b" is written last. Suffix "b" is used only for buried mineral soils.

A B horizon that has significant accumulation of clay and also shows evidence of development of color or structure, or both, is designated Bt ("t" has precedence over "w," "s," and "h"). A B horizon that is gleyed or that has accumulations of carbonates, sodium, silica, gypsum, salts more soluble than gypsum, or residual accumulation or sesquioxides carries the appropriate symbol—g, k, n, q, y, z, or o. If illuvial clay is also present, "t" precedes the other symbol: Btg.

Suffixes "h," "s," and "w" are not normally used with g, k, n, q, y, z, or o.

Vertical subdivision.—Commonly a horizon or layer designated by a single letter or a combination of letters needs to be subdivided. The Arabic numerals used for this purpose always follow all letters. Within a C, for example, successive layers could be C1, C2, C3, and so on; or, if the lower part is gleyed and the upper part is not, the designations could be C1-C2-Cg1-Cg2 or C-Cg1-Cg2-R.

These conventions apply whatever the purpose of subdivision. In many soils, horizons that would be identified by one unique set of letters are subdivided on the basis of evident morphological features, such as structure, color, or texture. These divisions are numbered consecutively. The numbering starts with 1 at whatever level in the profile any element of the letter symbol changes. Thus Bt1-Bt2-Btk1-Btk2 is used, not Bt1-Bt2-Btk3-Btk4. The numbering of vertical subdivisions within a horizon is not interrupted at a discontinuity (indicated by a numerical prefix) if the same letter combination is used in both materials: Bs1-Bs2-2Bs3-2Bs4 is used, not Bs1-Bs2-2Bs1-2Bs2.

Sometimes, thick layers are subdivided during sampling for laboratory analyses even though differences in morphology are not evident in the field. These layers need to be identified. This is done by following the convention of using Arabic numerals to identify the subdivision. The Arabic numerals would follow the letter designations and be a part of the horizon designation. For example, four layers of a Bt2 horizon sampled by 10-cm increments would be designated Bt21, Bt22, Bt23, and Bt24. The Bt2 horizon is subdivided for sampling purposes only.

F. Discontinuities.—In mineral soils Arabic numerals are used as prefixes to indicate discontinuities. Wherever needed, they are used preceding A, E, B, C, and R. These prefixes are distinct from Arabic numerals used as suffixes to denote vertical subdivisions.

A discontinuity is a significant change in particle-size distribution or mineralogy that indicates a difference in the material from which the horizons formed and/or a significant difference in age, unless that difference in age is indicated by the suffix "b." Symbols to identify discontinuities are used only when they will contribute substantially to the reader's understanding of relationships among horizons. Stratification common to soils formed in alluvium is not designated as discontinuity,
unless particle size distribution differs markedly (strongly contrasting particle-size class, as defined by Soil Taxonomy) from layer to layer even though genetic horizons have formed in the contrasting layers.

Where a soil has formed entirely in one kind of material, a prefix is omitted from the symbol; the whole profile is material 1. Similarly, the uppermost material in a profile having two or more contrasting materials is understood to be material 1, but the number is omitted. Numbering starts with the second layer of contrasting material, which is designated "2." Underlying contrasting layers are numbered consecutively. Even though a layer below material 2 is similar to material 1, it is designated "3" in the sequence. The numbers indicate a change in the material, not the type of material. Where two or more consecutive horizons formed in one kind of material, the same prefix number is applied to all of the horizon designations in that material: Ap-E-Bt1-2Bt2-2Bt3-2BC. The number of suffixes designating subdivisions of the Bt horizon continue in consecutive order across the discontinuity.

If an R layer is below a soil that formed in residuum and the material of the R layer is judged to be like that from which the material of the soil weathered, the Arabic number prefix is not used. If it is thought that the R layer would not produce material like that in the solum, the number prefix is used, as in A-Bt-C-2R or A-Bt-2R. If part of the solum formed in residuum, "R" is given the appropriate prefix: Ap-Bt1-2Bt2-2Bt3-2C1-2C2-2R.

Buried horizons (designated "b") are special problems. A buried horizon is obviously not in the same deposit as horizons in the overlying deposit. Some buried horizons, however, formed in material lithologically like that of the overlying deposit. A prefix is not used to distinguish material of such buried horizons. If the material in which a horizon of a buried soil formed is lithologically unlike that of the overlying material, the discontinuity is designated by number prefixes and the symbol for a buried horizon is used as well: Ap-Bt1-Bt2-BC-2ABb-2Btb1-2Btb2-2C.

In organic soils, discontinuities between different kinds of layers are not identified. In most cases, the differences are shown by the letter suffix designations if the different layers are organic or by the master symbol if the different layers are mineral.

Use of the prime.—Identical letter and numerical designations may be appropriate for two or more horizons separated by at least one horizon or layer of a different kind in the same pedon. The sequence A-E-Bt-E-Btx-C is an example: the soil has two E horizons. To make communication easier, the prime is used with the master horizon symbol of the lower of two horizons having identical designations: A-E-Bt-E'-Btx-C. The prime is applied to the capital letter designation and any lower-case symbols follow it: B't. The prime is not used unless all letters of the designations of two different layers are identical. Rarely, three layers have identical letter symbols; a double prime can be used: E".

The same principle applies in designating layers of organic soils. The prime is used only to distinguish two or more horizons that have identical symbols: Oi-C-O'i-C' or Oi-C-Oe-C'. The prime is added to the lower C layer to differentiate it from the upper.
Examples of Horizon Sequences

Grassland: A, Bt, Bk, Bw, Ck
Forest: Oi, Oe or Oa, E, Bt, C
Oi, E, Bw, C, R
Oi, Oa, E, Bs, Bh, C
Oi, 2E, 2Bw, 2C, 2R

G. Boundaries of Horizons and Layers

A boundary is a surface or transitional layer between two adjoining horizons or layers. Most boundaries are zones of transition rather than sharp lines of division. Boundaries vary in distinctness and in topography.

Distinctness.—Distinctness refers to the thickness of the zone within which the boundary can be located. The distinctness of a boundary depends partly on the degree of contrast between the adjacent layers and partly on the thickness of the transitional zone between them. Distinctness is defined in terms of thickness of the transitional zone:

- Abrupt: Less than 2 cm thick
- Clear: 2 to 5 cm thick
- Gradual: 5 to 15 cm thick
- Diffuse: More than 15 cm thick

Abrupt soil boundaries, such as those between the E and Bt horizons in many soils, are easily determined. Some boundaries are not readily seen but can be located by testing the soil above and below the boundary. Diffuse boundaries, such as those in many old soils in tropical areas, are most difficult to locate and require time-consuming comparisons of small specimens of soil from various parts of the profile until the midpoint of the transitional zone is determined. For soils that have nearly uniform properties or that change very gradually as depth increases, horizon boundaries are imposed more or less arbitrarily without clear evidence of differences.

Topography.—Topography refers to the irregularities of the surface that divides the horizons. Even though soil layers are commonly seen in vertical section, they are three-dimensional. Topography of boundaries is described with the following terms:

- Smooth: The boundary is a plane with few or no irregularities.
- Wavy: The boundary has undulations in which depressions are wider than they are deep.
- Irregular: The boundary has pockets that are deeper than they are wide.
Broken: One or both of the horizons or layers separated by the boundary are discontinuous and the boundary is interrupted.

Standard soil descriptions include four features of the soil profile we have not discussed yet in this part: depth, roots, coarse fragments and boundary. (Refer to FAO Guideline for Soil Profile Description for detail)